# Direct Simulatons Of Nonlinear Three-Dimensional Wave and Wave-Group Dynamics

Dick K.P. Yue
Department of Ocean Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

phone: (617) 253-6823 fax: (617) 253-8125 email: yue@mit.edu Award #: N000149810790

### LONG-TERM GOAL

The ultimate goal is to develop effective and robust computational tools for nonlinear dynamics of three-dimensional waves. Of particular interests are the spatial/temporal coherence of such waves and the nonlinear mechanism of such coherent structures.

#### **OBJECTIVES**

The objectives are to develop and improve the efficiency of two complementary computational methods, a high-order spectral method (HOS) and a fully-nonlinear mixed-Eulerian-Lagrangian (MEL) approach, for long-time large-domain wavefield evolutions; to develop methodologies for data assimilation using HOS/MEL simulations; and to obtain three-dimensional spatial/temporal wave coherence, structures and their mechanisms.

### APPROACH

Direct computations by HOS and MEL methods are performed to obtain assessment and understanding of the mechanism and coherence of steep three-dimensional ocean waves. The two computational methods are complementary: HOS provides large-scale three-dimensional simulations which also serve to corroborate experimental and field data, confirm perturbation predictions, and identify local wave events and episodes of interests; while MEL obtains detailed fully-nonlinear three-dimensional wave kinematics/dynamics for specific local episodic events.

### WORK COMPLETED

The project has started for just a few months, during which a multiple-level iterative scheme for wave reconstruction using HOS/MEL optimization has been developed and tested. The completion of this work is essential for data assimilation and proper specification of the initial conditions for HOS/MEL simulations.

### **RESULTS**

Some preliminary studies are conducted on wave reconstruction of two-dimensional wave fields. Figure 1 shows the comparison of the specified wave probe record and the HOS simulation result for about 10 dominant wave periods . The agreement between them is excellent.

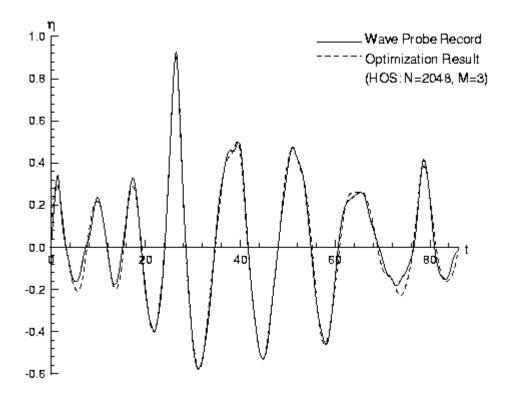



Figure 1. Comparison of computed versus experimentally measured free-surface elevation (\*10 meters) at a given point as a function of time (seconds) of a two-dimensional wavefield:
\_\_\_\_\_\_\_\_, experiments of Stansberg et al. 1995; - - - , HOS simulation with N=2048 spectral modes and M=3 order.

### IMPACT/APPLICATION

The understanding and modeling of steep three-dimensional wave evolutions are essential to the design and safety of very large floating structures such as the proposed Mobile Offshore Base (MOB).

### **FUTURE WORKS:**

The planned immediate tasks include to:

- Improve the efficiency of HOS/MEL
- Accelerate the convergence of wave reconstruction optimization
- Generalize wave reconstruction to full three-dimensions and multiple measurement points
- Perform Monte Carlo simulations of wave spectrum evolution using HOS

## **REFERENCES**

Stansberg, C.T., Huse, E., Krokstad, J.R., and Lehn, E. 1995 Experimental study of nonlinear loads on vertical cylinders in steep random waves. <u>Proc. 5th ISOPE Conference</u>, the <u>Hague</u>, the <u>Netherlands</u>.